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1. INTRODUCTION 

ANALYSES of fluid flow over wavy walls have applications in 
different areas such as transpiration cooling of re-entry 
vehicles and rocket boosters, cross-hatching on ablative 
surfaces and film vaporization in combustion chambers. In 
view of these applications Lekoudis et al. [l] have made a 
linear analysis of compressible boundary-layer flows over a 
wavy wall. Shankar and Sinha [2] have studied the effects of 
wall waviness on the well known Rayleigh problem. Lessen 
and Gangwani [3] have analysed the effect ofsmall amplitude 
wall waviness upon the stability of the laminar boundary 
layer. In all these studies the authors have taken the wavy wall 
to be oriented in a horizontal direction and studied the effect 
of the waviness on the flow field. 

The present authors, Vajravelu and Sastri [4] have made a 
systematic analysis of free convective heat transfer in a 
viscous fluid confined between a long vertical wavy wall and a 
parallel flat wall and have established that the flow and heat 
transfer characteristics are significantly affected by the wall 
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waviness. The present problem is an extension of [4] for the 
case when the channel walls are wavy and is taken for study 
for two reasons: firstly, its solution will be useful in the 
stability analysis (the stability results will be presented in 
another paper) and secondly, the heat transfer results have a 
definite bearing on the design of oil or gas-fired boilers. Due 
consideration has been given to different cases of orientation 
of the channel walls (see Fig. l), because any relative 
differences in the orientation can lead to significant changes 
in the heat transfer results. The governing equations have 
been solved exactly analogous to that of [4]. It is interesting, 
but not surprising, to note that the mean part of the solution 
coincides with that in [4], after modifications resulting from 
the different choices of the origin in [4] and in the present 
investigation, while the perturbed part of the solution is the 
contribution of the waviness of the walls. 

2. FORMULATION AND BOLUTlON OF THE PROBLEM 

Figure 1 depicts the various channels considered in this 
study.LetY=d+s*cosKX(=y,,say)andY= -d+e* 
cos(KX + w) ( =y2, say) represent the channel walls, with w 
taking values equal to 0, n/2, n and 3x/2 to denote changes in 
the orientation of the channel walls, which are maintained at 
constant temperatures T, and T, respectively. Assuming the 
flow to be laminar, steady and two-dimensional the govern- 
ing equations of the flow and heat transfer of the problem are 
exactly the same as those in [4]. Using the method of 
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FIG. 1. Channels under consideration. 
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FIG. 2. Dimensionless first-order velocity profiles. I = 0.01, P = 0.71 and m = - 1. (a) lx = 0; (b) Ax = n/2. 
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FIG. 3. Dimensionless first-order velocity profiles. Legends and curves as in Fig. 2. 

perturbations we have taken the flow and the temperature- 
fields in the non-dimensional variables as 

u(x,y) = uocv) + U,(X,Y), U(X,Y) = U,(X,YL 

P(X,Y) = P,(x) + P,(X,Y), @(X,Y) = WY) + ~,kY) 

and obtained the solutions for the mean parts (uO, .9,) and the 
perturbed parts (ui, t~i, 0i, P,) subject to the relevant 
boundary conditions (for details, the reader may refer to [4]). 
For the sake of brevity, the solutions are not presented here. 

As in [4], here also, the skin friction coefficients 71.2 and the 
heat transfer coefficients Nui,a have been obtained along with 
the pressure drop P. These flow and heat-transfer characteris- 
tics have been found to depend on the dimensionless para- 
meters G, the free convection parameter; I, the frequency 
parameter; m, the wall temperature ratio; P, the Prandtl 
number; E, the amplitude of the wavy wall and a, the heat 
source/ sink parameter and evaluated numerically for several 
sets of values of these parameters, in addition to x and y. 
These results are embodied in Figs. 2-5. In Section 3 we have 
recorded the qualitative behaviours of the flow and heat 
transfer characteristics which show the effect of the waviness 
of the channel walls. 
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3. DISCUSSION OF THE RESULTS 

In [4] a detailed account has been given as to the behaviour 
of the mean part of the solution and those results hold more 
or less qualitatively here as well. In what follows the 
discussion has been restricted to the perturbed parts of the 
solution in the case of air (P = 0.71) when m = - 1 only, as 
the results are qualitatively applicable in the case of water (P 
= 7). 

Figures 2,3 and 4 describe the behaviour of the perturbed 
quantities ui, v, and t?i, when i.x = 0 and n/2, respectively. 
From Fig. 2 it is clear that u, is affected significantly by the 
parameter w indicating that u, is quite different in the several 
channels under consideration. It is also evident that the 
velocity ui increases with the free convection parameter G or 
the wall temperature ratio m or the heat source parameter a, 
this result holding even with the frequency parameter 1,. A 
close look into Fig. 2 reveals further that the perturbed 
velocity is oscillatory in nature and this nature is more 
prominent when the parameters E, G and a take higher values. 

Figure 3 shows the behaviour of ui, the fluid velocity 
perpendicular to the channel length. A comparative study of 
Figs. 2 and 3 reveals that the qualitative behaviour of c’i is 
similar to that of ui despite the fact that the values of ri are 
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FIG. 4. Dimensionless first-order temperature profiles. Legends and curves I-VI as in Fig. 2 
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FIG. 5. Flow and heat transfer characteristics at the walls. I = 0.01, P = 0.71 and m = - 1. (a) Skin friction; 
(b) Nusselt number. 
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much smaller than those of ui. From Fig. 4 it is noticed that 
the heat source parameter a has the strongest effect on the 
temperature 8i and that the effect of wall waviness on 0i is 
very much similar to that on ut. 

It is worth noting that the effects of the various parameters 
on the total velocities (u, u) and the total temperature (0) are 
qualitatively similar to those on their perturbed counterparts. 

Figure 5(a) shows the behaviour of the skin friction at the 
channel walls. From this figure it is clear that, the skin friction 
at the wall y = y, increases with G and a, this increase with G 
being the greater; nevertheless, this behaviour is reversed at 
the other wall. Figure 5(b) describes the behaviour of the wall 
heat transfer coefficients. From Fig. 5(b) it is noticed that, the 
heat transfer coefficient at the wall y = y2 increases with a, G 
and w, while the reverse is true at the other wall. Also, when 
the heat source parameter a takes increasing positive values, 
the heat transfer coefficient is found to be positive at the wall y 
= yz and negative at the other wall, which result indicates 
physically that the heat flows into the walls only. However, 
this behaviour is duly reversed in the case of heat sinks (a < 
0). Based on the numerical calculations, we finally conclude 
that, in the presence of heat sinks, the pressure at y = y, 
exceeds that on the other wall in the first half (0 < Ix < n/2), 
while when a > 0, this behaviour gets reversed. 
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